【和山数学论坛198期】浙江大学王伟教授学术报告

信息来源:学院办公室 点击次数:发布时间:2019-10-26

一、题目:The tangential k-Cauchy-Fueter complexes and Hartogs’ phenomenon over the right quaternionic Heisenberg group

二、主讲人:浙江大学王伟教授

三、时间:201910月30日 15:30

四、地点:A4-305

摘要:We construct the tangential k-Cauchy-Fueter complexes on the right quaternionic Heisenberg group, as the quaternionic counterpart of \bar∂_b-complex on the Heisenberg group in the theory of several complex variables. We can use the L2-estimate to solve the nonhomogeneous tangential k-Cauchy-Fueter equation under the compatibility condition over this group modulo a lattice. This solution has an important vanishing property when the group is higher dimensional. It allows us to prove the Hartogs’ extension phenomenon for k-CF functions, which are the quaternionic counterpart of CR functions. This is a joint work with Yun Shi.

报告人简介:王伟,浙江大学教授,博士生导师。主要研究方向;多复变函数论。王伟教授已主持了国家自然科学基金面上项目7项,Trans. Amer. Math. Soc., J. Eur. Math. Soc. (JEMS),Bull. Sci. Math., J. Math. Pures Appl., J. Math. Phys.等国内外重要期刊上发表论文50余篇。王伟教授曾在第五届华人数学家大会上做45分钟邀请报告。

欢迎广大师生参加!

联系人:叶善力,施云

Baidu
map