报告题目: Fractional coloring of planar graphs with girth five
报告人:胡小兰
报告时间:2019年10月11日(星期五)下午15:00-16:00
报告地点:闻理园A4-305(会议室)
摘要:A graph G is (a : b)-colorable if there exists an assignment of b-element subsets of (1 ,…, a) to vertices of G such that sets assigned to adjacent vertices are disjoint. We first show that for every triangle-free planar graph G and a vertex x in V(G), the graph G has a set coloring φ of G by subsets of (1 ,…, 6) such that |φ(v)|≥2 for v in V(G) and |φ(x)|≥3. As a corollary, every triangle-free planar graph on n vertices is (6n : 2n + 1)-colorable. We further use this result to prove that for every ∆, there exists a constant M∆ such that every planar graph G of girth at least five and maximum degree ∆ is (6M∆: 2M∆+1) -colorable. Consequently, planar graphs of girth at least five with bounded maximum degree ∆ have fractional chromatic number at most 3-3/(2M∆+1).
报告人简介:胡小兰,现为华中师范大学数学与统计学学院助理研究员。2012年于湖北大学获理学硕士学位,2015年于南京大学获理学博士学位。2013年9月至2013年12月在美国西弗吉尼亚大学进行短期学术访问,2017年3月至2018年9月在捷克查理大学交流访问。美国《数学评论》评论员,主持国家自然科学基金面上项目和青年项目各1项,主持湖北省自然科学基金青年项目1 项,录用和发表SCI 索引论文二十余篇。
欢迎各位师生参加,联系人:胡晓雪
数学信息与统计系
2019年10月8日