一. 主题:On the Laplacian spread of a graph
二. 主讲人:Kinkar Ch. Das
三. 时间:2018年12月29号,下午:15:00—15:30
四. 地点:A4-305
摘要:The Laplacian spread of a graph G with n vertices is detoned to be the gap sL(G)between the largest and the second smallest Laplacian eigenvalues of G. It is conjectured that sL(G) is less than or equal to n-1. In this talk, we first establish a new sharp upper bound for sL(G), and then use it to prove that the conjecture is true for t-quasi-regular graphs and K3-free graphs. Finally, we give several sharp lower bounds for sL(G) as well.
个人简介:Kinkar Ch. Das教授现任韩国成均馆大学(2019QS世界大学排名100)数学系教授,2004年博士毕业于印度理工学院。现为2个SCI(E)杂志的编委会成员,出版了5本全英文书,发表了超过200多篇SCI(E)论文。 主要研究代数图论,分子图论等一些与图论和组合相关的方向。
欢迎广大师生参加(联系人:孙少伟)