一、报告题目:Expected hitting times for random walks on quadrilateral graphs and their applications
二、报告人:华中师范大学数学与统计学学院李书超教授
三、时间:2017年10月2日(星期一)下午16:00—17:00
四、地点:闻理园A4-216室
报告摘要:Let G be a connected graph. The quadrilateral graph of G, denoted by QG, is the graph obtained from G by replacing each edge in G with two parallel paths of lengths 1 and 3. In this paper, the complete information for the eigenvalues of the probability transition matrix of a random walk on QG in terms of those of G is provided. Then the expected hitting time between any two vertices of QG in terms of those of G is completely determined. Finally, as applications, the correlation between the degree-Kirchhoff index (resp. Kemeny's constant, number of spanning trees) of QG and G is derived. Furthermore, based on the relationship of the expected hitting time between any two vertices of QG and G, the resistance distance between any two vertices of QG is presented in terms of that of G.
报告人简介:李书超,华中师范大学数学与统计学学院教授、博士生导师,信息与计算系主任。研究方向是图论与组合数学。先后在European Journal of Combinatorics,Journal of Combinatorial Designs、Journal of Combinatorial Optimization等20多个国际SCI期刊发表学术论文90余篇,其中有两篇论文入选 “2008年中国100篇最具影响国际学术论文”,2016年有两篇论文入选ESI高被引论文。2012主持完成的项目“图的几类重要不变量研究”获湖北省自然科学奖;2013年入选“教育部新世纪优秀人才支持计划”,主持、参与多项国家自然科学基金面上项目。
欢迎师生参加!
理学院
2017.9.26