科研论文(部分)
1. Y. Kong, Y.L. Jiang, Xianyi Li(C), J.S. Lei, A time-specified zeroing neural network for quadratic programming with its redundant manipulation. IEEE Transactions on Industrial Electronics, 2022,69(5) ,4977-4987.
2. W.B. Yao, Xianyi Li(C), Complicate bifurcation behaviors of a discrete predator–prey model with group defense and nonlinear harvesting in prey, Appl. Anal., 2022, DOI:10.1080/00036811. 2022. 2030724.
3. W.B. Yao, Xianyi Li(C), Bifurcation difference induced by different discrete methods in a discrete predator-prey model, J. Nonlinear Model. Anal., 2022. 4(1),64-79.
4. J.G. Dong, Xianyi Li(C), Bifurcation of a discrete predator-prey model with increasing functional response and constant-yield prey harvesting, Electric Research Archive, 2022, 30(10), 3930-3948.
5. Xianyi Li(C), Y.Q. Liu, Transcritical bifurcation and flip bifurcation of a new discrete ratio-dependent predator-prey system, Qualitative Theory of Dynamical Systems, 2022, 21, Article number: 122.
6. Z.K. Pan, Xianyi Li(C), Stability and Neimark–Sacker bifurcation for a discrete Nicholson’s blowflies model with proportional delay, J. Difference Equat. Appl., 2021,27(2), 250-260.
7. Y.Q.Liu, Xianyi Li(C), Dynamics of a discrete predator-prey model with Holling-II functional response, Intern. J. Biomath., 2021, 2150068, 20 pages (IF; 2.129, SCI三区).
8. M.J. Ruan , C. Li , Xianyi Li(C), Codimension two 1:1 strong resonance bifurcation in a discrete predator-prey model with Holling IV functional response, AIMS Mathematics, 2021,7(2): 3150–3168.
9. LI Xianyi(C), LI W., Global asymptotical stability in a rational difference equation, Appl. Math. J. Chinese Univ., 2021.36(1), 51-59.
10. Xianyi Li (C), Umirzakov Mirjalol, Modelling and analysis of dynamics for a 3D mixed Lorenz system with a damped term, Intern. J. Nonl. Sci. Numer. Simul., 2021, 22(2), 217-241.
11. G. F. Deng, Xianyi Li(C), Q. Y. Lu, L. L. Qian, Dichotomy between a generalized Lyness difference equation with period-two coefficients and its perturbation, Appl. Math. Letters, 2020, 109, 106522-1-8.
12. Xianyi Li (C), H.J. Wang , A three-dimensional nonlinear system with a single heteroclinic trajectory, J. Appl. Anal. Comput., 2020,10 (1), 249–266.
13. H.J.Wang, Xianyi Li (C), A novel hyperchaotic system with infinitely many heteroclinic orbits coined, Chaos, Solitons and Fractals, 2018, 106 , 5–15.
14. Q.Q Fang, Xianyi Li (C), Complex dynamics of a discrete predator–prey system with a strong Allee effect on the prey and a ratio-dependent functional response, Advances in Differences, 2018, 320, 12 pages.
15. W. Li, Xianyi Li (C), Neimark-Sacker bifurcation of a semi-discrete hematopoiesis model, J. Appl. Anal. Comput., 2018, 8(6), 1679-1693.
16. H.J. Wang, Xianyi Li (C), A note on “Hopf bifurcation analysis and ultimate bound estimation of a new 4-D quadratic autonomous hyper-chaotic system”in [Appl. Math. Comput. 291 (2016) 323–339] by Amin Zarei and Saeed Tavakoli, Appl. Math.Comput., 2018, 329, 1–4.
17. Xianyi Li (C), H.J. Wang, Heteroclinic trajectory and Hopf bifurcation in an extended Lorenz system, Intern. J. Bifur. Chaos, 2018, 28(9), 1850111, (12 pages) .
18. H.J. Wang, Xianyi Li(C), Hopf bifurcation and new singular orbits coined in a Lorenz-like, J. Appl. Anal. Comput., 2018, 8(5), 1308-1325.
19. H.J. Wang , Xianyi Li (C), Infinitely many heteroclinic orbits of a complex Lorenz system, Intern. J. Bifur.Chaos, 2017, 27 (7), 1750110, (14 pages).
20. Xianyi Li(C), C. Li, H.J. Wang, Complex dynamics of a simple 3D autonomous chaotic system with four-wing , J. Appl. Anal. Comput., 2017,7(2), 745-769.
21. Haijun Wang , Xianyi Li (C), New heteroclinic orbits coined, Intern. J. Bifur. Chaos, 2016,26(12), 1650194 (13 pages).
22. T.H., Xiong, Xianyi Li (C), Y.P. Lv, W.J. Yi, Research on the numerical simulation of the nonlinear dynamics of a supercavitating vehicle, Shock and Vibration, 2016, Vol.2016, 10 pages.
23. H.J. Wang, Xianyi Li (C), Some new insights into a known Chen-like system, Math. Method Appl. Sci., 2016, 39, 1747-1764.
24. H.J. Wang, Xianyi Li (C), On singular orbits and a given conjecture for a 3D Lorenz-like system, Nonlinear Dyn., 2015, 80(1-2), 969-981.
25. H.J. Wang, Xianyi Li(C), A note on “Introduction and synchronization of a five-term chaotic system with an absolute-value term” in [Nonlinear Dyn. 73 (2013) 311–323] by Pyung Hun Chang and Dongwon Kim, Nonlinear Dynamics, 2015, 81, 1017-1019.
26. H.J. Wang, Xianyi Li (C), New results to a 3D chaotic system with two different kinds of non-isolated equilibria, J. Comput. Nonlinear Dyn., 2015,10, 06-1021-14.
27. H.J. Wang, Xianyi Li (C), New route of chaotic behavior in a 3D chaotic system, Optik – Intern. J. Light Electron Optics, 2015, 126, 2354-2361.
28. F.J., Geng,Xianyi Li (C), Singular orbits and dynamics at infinity of a conjugate Lorenz-like system, Math. Model. Anal., 2015, 20(2), 148-167.
29. C.Wang, Xianyi Li (C),Further investigations into the stability and bifurcation of a discrete predator-prey model,J.Math.Anal.Appl.,2015,(422) 920–939.
30. C. Wang, Xianyi Li (C), Stability and Neimark-Sacker bifurcation of a semi-discrete population model, J. Appl. Anal. Comput., 2014, 4(4), 419—435.
31. Haijun Wang, Xianyi Li (C),More dynamical properties revealed from a 3D Lorenz –like system,Intern. J. Bifur. Chaos,2014, 24, 1450133 (29 pages) .
32. Xianyi Li (C), Z.X.. Zhou, Hopf bifurcation of codimension one and dynamical simulation for a 3D autonomous chaotic system, Bullet. Korean Math. Soc., 2014,51(2), 457-478.
33. Z.Q. Qiao, Xianyi Li(C), Dynamical analysis and numerical simulation of a new Lorenz-type chaotic system,Math.Computer Model. Dyn. Syst., 2014,20(3), 264-283.
34. G.F. Deng, Xianyi Li (C), Dichotomy of a perturbed Lyness difference equation, Appl. Math.Comput., 2014, 236, 229-234.
35. Xianyi Li (C), P. Wang, Hopf bifurcation and heteroclinic orbit in a 3D autonomous chaotic system, Nonlinear Dynamics, 2013,73, 621-632.
36. W.P. Zhang, C. Guo, Xianyi. Li, Periodicity in a non-autonomous predator-prey system with Hassell-Varley type functional response, Dyn. Syst. Appl., 2013, 22, 1-14.
37. Xianyi Li (C), C. Wang, On a conjecture of trichotomy and bifurcation in a third order rational difference equation, Annual Review of Chaos Theory, Bifurcations and Dynamical Systems, 2013, 3, 34-44.
38. Xianyi Li (C), L. Zhou, Global dynamics for a higher order rational difference equation, Rocky Mountain J. Math., 2013, 43(4), 1261-1280.
39. Xianyi Li (C), H.J. Wang ,Homoclinic and heteroclinic orbits and bifurcations of a new Lorenz-type system,Intern. J. Bifur. Chaos,2011, 21(9), 2695-2712.
40. Xianyi Li (C), Q.J. Ou,Dynamical properties and simulation of a new Lorenz-like chaotic system,Nonlinear Dynamics,2011, 65(3, 255 – 270.
科研项目(部分)
1. 国家自然科学基金面上项目:高维非线性系统的分支问题与仿真研究(批准号:61473340),2015.01—2018.12, 主持
2. 国家自然科学基金面上项目:高阶非线性差分方程的周期性与分支(批准号:10771094),2008.1—2010.12, 主持
3. 国家自然科学基金数学天元基金:时滞差分方程的定性分析及其数学建模(批准号:TY10026002-01-05-03),2001.1—2002.12,主持
4. 国家留学基金:法国里尔科技大学数学系博士后,2005.9—2006.9,主持
科研奖励与荣誉
1. “湖南省高等学校科技工作先进工作者”(独立,1999);
2. 山东省优秀科研成果三等奖(排名第二,2001);
3. “衡阳市自然科学优秀论文一等奖”(独立,2002);
4.“湖南省自然科学优秀论文三等奖”(排名第一,2002);
5.“上海市交通银行奖学金”(独立,2002);
6.“九三衡阳市委先进科技工作者”(独立,2003);
7.“华东师范大学优秀研究生奖学金”(独立,2003);
8.“湖南省青年骨干教师”(独立,2003);
9.“湖南省新世纪‘121’人才工程”(独立,2004);
10.“湖南省学科带头人”(独立,2005);
11.“九三学社湖南省优秀社员”(独立,2005);
12. 全国第三届“秦元勋常微分方程奖”(独立,2005);
13. 博士论文被评为“上海市研究生优秀成果”(优博, 独立,2006);
14. 被遴选为“广东省‘千百十’人才工程省级培养对象” (第二层次人选,也称“广东省学术带头人”)(独立,2008);
15. 被遴选为“浙江省‘钱江学者’特聘教授”(独立,2018);
16. “九三学社浙江省委员会优秀社员”( 独立,2019);
17. 被遴选为“浙江科技学院‘科大学者’”(独立,2019)。
18. “九三学社创社75周年浙江省委员会先进个人”(独立,2020);
19. “九三学社浙江省委员会参政议政先进个人”(独立,2020);
20. “九三学社浙江省委员会社会服务优秀社员”(独立,2020);
21. 2020年5月12日,应邀参加全国人大常委、浙江省人大副主任、九三学社浙江省委主委率领的专家组赴多家创新型国有企业调研;
22. 2021年3月28日至31日,作为浙江省受邀的四位专家之一,应邀陪同全国政协副主席、九三学社中央常务副主席率领国家发改委、科技部、财政部、统战部等相关领导,携中央电视台、人民日报、新华社、中新社等一行26人的调研组赴浙江省开展的重点考察调研。